Bayesian semi‐parametric G‐computation for causal inference in a cohort study with MNAR dropout and death
نویسندگان
چکیده
منابع مشابه
Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death.
Motivated by aging research, we propose an estimator of the effect of a time-varying exposure on an outcome in longitudinal studies with dropout and truncation by death. We use an inverse-probability weighted (IPW) estimator to derive a doubly robust augmented inverse-probability weighted (AIPW) estimator. IPW estimation involves weights for the exposure mechanism, dropout, and mortality; AIPW ...
متن کاملSemiparametric Bayesian inference for phage display data.
We discuss inference for a human phage display experiment with three stages. The data are tripeptide counts by tissue and stage. The primary aim of the experiment is to identify ligands that bind with high affinity to a given tissue. We formalize the research question as inference about the monotonicity of mean counts over stages. The inference goal is then to identify a list of peptide-tissue ...
متن کاملBayesian Inference for Gaussian Semiparametric Multilevel Models
Bayesian inference for complex hierarchical models with smoothing splines is typically intractable, requiring approximate inference methods for use in practice. Markov Chain Monte Carlo (MCMC) is the standard method for generating samples from the posterior distribution. However, for large or complex models, MCMC can be computationally intensive, or even infeasible. Mean Field Variational Bayes...
متن کاملBayesian inference for semiparametric binary regression
We propose a regression model for binary response data which places no structural restrictions on the link function except monotonicity and known location and scale. Predictors enter linearly. We demonstrate Bayesian inference calculations in this model. By modifying the Dirichlet process, we obtain a natural prior measure over this semiparametric model, and we use Polya sequence theory to form...
متن کاملSemiparametric Bayesian inference for regression models
This paper presents a method for Bayesian inference for the regression parameters in a linear model with independent and identically distributed errors that does not require the specification of a parametric family of densities for the error distribution. This method first selects a nonparametric kernel density estimate of the error distribution which is unimodal and based on the least-squares ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)
سال: 2021
ISSN: 0035-9254,1467-9876
DOI: 10.1111/rssc.12464